

RadonNet, 23IND07: Radon metrology: Sensor networks for large buildings and future cities

The goal of the project is to eliminate preventable lung cancer from radon (222 Rn) by improving indoor air quality in Europe through the development of advanced sensor networks and calibration techniques: ultimately leading to more energy-efficient and healthier buildings for the future \rightarrow Reducing radon risk, as easily as using a thermostat

Needs and objectives

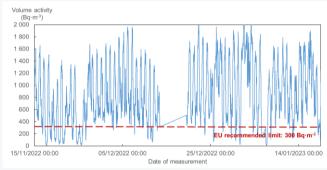
- Radon concentration limits are defined at 300 Bq·m⁻³ by Directive 2013/59/Euratom
- Efficient ventilation is necessary to mitigate radon risks and maintain indoor air quality; balancing energy efficiency and radiation protection is the key
- Smart sensor networks need to monitor variations in radon levels; improving sensor metrology for cost-effective and efficient calibration is a priority

Utilizing fast-response connected devices with precise calibration standards via a network is the best solution to support cost-effective radon mitigation

Scientific research and excellence through four work packages

WPI: New concepts and methods for radon concentration measurements

- Current state of the art: Costly detectors unsuitable for direct radon mitigation
- Progress beyond the state of the art: Developing novel sensor concepts and methodologies to detect and measure radon activity concentration indoor; based on three detection concepts:


ARTE Altine Prouse Archite Grice V/ Grice V/ Agrice V/ Agrice

Silicon-semiconductors

- Pulse ion chamber
- Improving response time (< 5 min), sensitivity (< 50 Bq·m⁻³) and reduce measurement uncertainty (< 20%)
- Creating high-precision measurement sensors with a focus on miniaturization, connectivity and cost-effectiveness

WP3: Network of radon sensors

 Current state of the art: No radon sensor network and corresponding calibration for energy-efficient, cost-effective radon mitigation

Example of collected data: Mitigation is not linked to radon measurement

- Progress beyond the state of the art.
 - Developing a quality-assured sensor network for large buildings and future cities using sensors from WP1 and calibration from WP2
 - Developing a data collection testbed, associated analysis, and analytical methods to extract the background, perform anomaly detection, and determine data analysis locations within sensor networks

Creating Impact (WP5)

Output and early impact

- Dissemination: Training course, 2 workshops, at least 10 publications and 12 presentations at international conferences
- Metrology: New standards for in situ and cost effective calibration, new measurement techniques and methodology for time response and

Calibrated radon network for cost-effective mitigation and a healthy future for European citizens

WP2: Traceable, in situ operando calibration procedures

 Current state of the art: Costly calibration in laboratory, no time response consideration, dynamic range and linearity is missing (RadonNORM and TraceRadon output)

- Progress beyond the state of the art.
 - Developing traceable, in situ operando calibration procedures
 - Achieving less than 10% calibration uncertainty at an activity concentration level of 50 Bq·m⁻³
- Considering response time, linearity, and dynamic range testing in the calibration procedures. Using technology and knowledge gained from WP1

WP4: Extended network for risk mitigation with energy saving

 Current state of the art: Ventilation for radon mitigation; not compatible with energy-efficiency

- Progress beyond the state of the art:
 - Developing an extension of the radon sensor network from WP3, integrating various sensor networks in connected buildings to optimize energy use, air quality management, and radiation protection
 - Extending the testbed from WP3 to incorporate data from other sensors, including novel air quality sensors
 - Investigating synergies between air quality and radon measurements, indoor and outdoor radiation measurements, and other sensor networks

Long-term and wider impact

- Economic: New radon in situ calibration techniques for radon will reduce cost and increase measurement reliability for a cost effective mitigation
 - Proposing solutions for the development of radon mitigation industry in Europe (does not exist in EU while in USA it is under development with a

linearity

Stakeholder support

- Recommendation: Calibration of a radon sensor network as support to Directive 2013/59/Euratom
- Industries: Prototypes of connected radon sensors and associated radon standards
- target of 2 million buildings per year)
- Reducing healthcare costs: for 1 € spent on radon mitigation an estimated 11-20 € will be saved
- Social: Improving national radon action plans and lowering the amount of lung cancers cases
- Research: High sensitivity sensors and techniques for space studies such as radon adsorption or desorption on the Moon

Management and consortium (WP6)

I6 participants: complementary expertise from 7 NMIs and DIs, 4 universities, a radioprotection authority with the help of 3 SMEs and a large company for prototype industrialisation

The project RadonNet (23IND07), has received funding from the European Partnership on Metrology (ID: 10.13039/100019599), co-financed from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States.

Coordinator: <u>benoit.sabot@cea.fr</u> Duration: 1 September 2024 to 2027